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N-soliton pattern in a self-gravitating fluid disk
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A nonlinear process of density perturbations in an infinitesimally thin fluid disk with uniform rotation and
self-gravitation is investigated. In a locally Cartesian system the amplitude equation turns out to be the
nonlinear Schro¨dinger equation. By solving the equation it is shown that the perturbed density can undergo
modulation in space, forming anN-soliton pattern in the radial direction. An astrophysical application of this
model to the early evolution of Saturn’s ring system is studied.@S1063-651X~97!11012-1#

PACS number~s!: 03.40.Kf, 95.10.Ce, 62.10.1s
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I. INTRODUCTION

When the density perturbations excited in a se
gravitating fluid disk have finite amplitudes, a modulation
the envelope occurs owing to nonlinear couplings of the p
turbations. Then, in general, a spatial pattern is formed in
disk to saturate to the finite amplitude. Pattern formations
nonequilibrium fluid systems have been extensively d
cussed@1#. When nonlinearities are not strong, it is said th
a system can often be described theoretically by simple e
tions, which are called amplitude equations. The ways
deriving amplitude equations from microscopic equations
clude the introduction of multiple scales to formally separ
the fast and slow dependences@2,3# or the use of mode pro
jection techniques@4,5#, which emphasizes the slaving ide
Microscopic equations are considered as either more or
realistic descriptions of the phenomena or mathemat
models chosen so that their linear instabilities and long-t
solutions mimic those of the system under study. An int
esting point is that there are different microscopic mod
that have the same type of amplitude equations, whose f
is universal and whose numerical parameters reflect the
tails of each physical system. The studies of pattern form
tions are encountered in solid-state physics, nonlinear op
chemistry, and biology, showing the well-known analog
to fluid systems. This collective process of pattern format
is also important in some astrophysical backgrounds@6#, es-
pecially in the case of a self-gravitating disk. To deal w
such a problem some simplifications must be made for i
be analytically tractable. In our model the disk is assumed
be infinitely thin and rotating uniformly. This idealize
model has been studied in our previous work and the am
tude equation has been obtained by two-time-scale ana
@7#. In this paper we will investigate the amplitude equati
in a circular symmetric case, which turns out to be the
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mous nonlinear Schro¨dinger equation.
The nonlinear Schro¨dinger equation has been solved b

Zakharov and Shabat@8# using the inverse scattering metho
It is shown that for the initial value problem with the natur
boundary condition, the long-time asymptotic solution isN
stable solitons. This indicates that the nonlinear interacti
of the finite amplitude perturbations lead to the pattern f
mation from an initially smooth envelope, forming a
N-soliton structure in the disk.

The application of our model to the highly complicate
system of Saturn’s rings gives some interesting results.
study of Saturn’s rings is usually based on the resona
theory of celestial mechanics. However, for plasma phys
or gravitating systems with long-distance interactions,
role of collective effects is often decisive. The analysis
collective effects is a tradition of plasma physics. Introdu
tion of its ideas and methods to the study of the gravitat
systems seems fruitful@6#. Accordingly, we will try to ex-
plain the origin of Saturn’s ring structure on the basis of t
amplitude equation describing the pattern formation in
fluid disk.

The remainder of this paper is organized as follows.
Sec. II the amplitude equation describing the interactions
density perturbations up to nonlinear fourth order in an in
nitely thin fluid disk with uniform rotation and self
gravitation is obtained. In Sec. III the long-time asympto
solution to the nonlinear Schro¨dinger equation is given. The
locations of theN solitons are calculated under a certa
initial condition. The application to Saturn’s rings is studie
in Sec. IV. Conclusions are given in Sec. V.

II. AMPLITUDE EQUATION

An infinitesimally thin fluid disk with uniform rotation
and self-gravitation is described by equations

]s

]t
1“•~sv!50, ~1!
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]v

]t
1~v•“ !v12V3v5

1

s
“p2“F1V2r , ~2!

¹2F1
]2F

]z2 54pGsd~z!, ~3!

wheres is the surface density,v is the local velocity,V is
the rotating velocity, andF is the gravitational potential. The
equations are written in the reference frame rotating at
angular velocityV.

As our discussion is on the density perturbation of
disk, we write

s5s01t, ~4!

wheres0 is the background unperturbed density andt the
perturbation. In the assumption of slow variation ofs0 with
respect to the perturbationt and using the WKB approxima
tion k@(]/]r )lnutu in which k is the wave number of the
perturbation,

t}t̃ exp~2 ivt1 ik•r !. ~5!
fo

rtu
e

e

After the linearization of the original fluid equations one c
obtain the dispersion relation

vk
254V21k2cs

222pGs0k, ~6!

wherecs is the sound velocity.
By writing

v5
l

s
“m1“w2V3r , ~7!

wherel and m are the Clebsch variables suitable for bar
tropic fluids @9#, Eqs.~1!–~3! can be brought into a Hamil
tonian description approach, which is widely discussed
plasma physics@10#. Transforming to the Fourier compo
nents and introducing the canonical variableak , where

tk5
ks0

1/2

~2vk!1/2 ~ak1ak* !, ~8!

we get the perturbative expansion equation ofak @7#:
]ak

]t
1 ivkak52 i E dk1dk2@Vkk1k2

ak1
ak2

d~k2k12k2!12Vk2kk1
ak1
* ak2

d~k1k12k2!1Vkk1k2
* ak1

* ak2
* d~k1k11k2!#

2 i E dk1dk2dk2@4Wkk1k2k3
ak1

ak2
ak3

d~k2k12k22k3!16~Wkk1k2k3
1Wkk1k2k3

* !ak1
* ak2

ak3

3d~k1k12k22k3!112Wkk1k2k3
ak1

ak2
* ak3

* d~k2k11k21k3!14Wkk1k2k3
* ak1

* ak2
* ak3

* d~k1k11k21k3!#

1••• . ~9!
n

e

lar

q.
ll-
The most unstable mode lies at]vk /]k5yg50 or k0

5pGs0 /cs
2, where the dispersion curve has a minimum;

a nearly marginally stable disk withQ52csV/pGs0>1,
this mode is most easily excited. We suppose that the pe
bation is a narrow wave packet with central wave vectork0
~chosen as the direction of thex axis! selected. Thus, in
consideration of the linear dispersion~6!, only the four-wave
process is important. We have written this out in Eq.~9! up
to fourth order.

Using the two-time-scale method, from Eq.~9!, we can
derive the amplitude equation~for details see@7#!

i S ]A

]t
1vg

]A

]x D1
1

2
vg8

]2A

]x2 1
1

2

vg

k0
¹'

2 A2~2p!2TuAu2A

50, ~10!

where

t5S 2s0

vk0
D 1/2

k0Re@A~r ,t !eik0x2 ivk0
t#, ~11!

vg5S ]v

]k D
k0

, vg85S ]2v

]k2 D
k0

, ~12!
r

r-

and T is the interaction coefficient. In a locally Cartesia
system, making the transformations@11#

]

]x
→

]

]r
, ¹'[

]

]y
→

1

r

]

]u
~13!

and takingvg'0 for the most unstable mode, we get th
equation

i
]A

]t
1

1

2
vg8

]2A

]r 2 2~2p!2TuAu2A50, ~14!

which describes the original perturbations in the circu
symmetric case.

BecauseT,0 andvg8.0 @7#, Eq.~14! can be transformed
into a dimensionless form

i
]u

]s
1

1

2

]2u

] x̂2 1uuu2u50, ~15!

whereu52puTu1/2s0
1/2A, x̂5r /(vg8s0)1/2, s5t/s0 , ands0 is

an appropriate time scale. If we analytically continue E
~15! to x̂,0 in a symmetrical way, it becomes the we
known nonlinear Schro¨dinger equation.
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III. N-SOLITON SOLUTION

Zakharov and Shabat@8# have shown that the nonlinea
Schrödinger equation can be solved exactly by the inve
scattering method for the initial value problem with the na
ral boundary condition thatuuu tends to zero asux̂u→` to-
gether with all itsx̂ derivatives. Satsuma and Yajima@12#
provided a detailed analysis. It is found that if the initi
value of Eq.~15! is real and not an antisymmetric function
x̂, which is just our case, a bound soliton state is formed. T
long-time asymptotic behavior of the solution is well d
scribed by a series of solitons, while the nonsoliton par
shown to decay ass21/2.

For brevity we will not display how to solve the nonline
Schrödinger equation, but summarize the related results.
long-time asymptotic solution is written as@8#

u→(
n51

N

Sn~ x̂,s!52hn sech@2hn~ x̂22jns2 x̂n!#

3exp@22i jnx̂12i ~jn
22hn

2!s#, ~16!

where

x̂n5~2hn!21lnS b~zn!

2hna8~zn! D . ~17!

In the above,zn5jn1 ihn ~jn and hn are both real! are
discrete eigenvalues of the equation

iv x̂1Uv5zs3v, ~18!

where the eigenfunctionv is a two-component column vec
tor v5(v2

v1), s35(0
1

21
0 ), andU5(u*

0
0
u), in which u is a

solution of Eq.~15! andv develops according to

iv t5Av,

A5S 1
0

0
1D S 1

2

r221

r211

]2

] x̂22 i z
]

] x̂
1CD

1~r211!21S r2uuu2

2 ir2ux̂
*

iux̂

2uuu2D , ~19!

where r and C are constants independent ofx̂; a(z) and
b(z) are the transmission and reflection coefficients for
scattered state of Eq.~18!.

It is still rather difficult to deal with Eqs.~18! and ~19!.
An example that can be solved by the inverse-scatte
method is the caseu( x̂,s50)5Q sech(x̂) @12#. In this case,
jn50 andhn5Q2n1 1

2 , wheren must be positive integer
satisfying Q2n1 1

2 .0; the number of solitons isN5@Q
1 1

2 # with the square brackets indicating the integer part. T
N-soliton solution becomes

u→(
n51

N

2hnsech@2hn~ x̂2 x̂n!#exp@22ihn
2s#, ~20!

where

x̂n5~2hn!21lnS b~ ihn!

2hna8~ ihn! D ~21!
e
-

e

s

e

e

g

e

and

a~z!5
@G~2 i z1 1

2 !#2

G~2 i z1Q1 1
2 !G~2 i z2Q1 1

2 !
,

b~z!5
i sin~pQ!

cosh~pz!
.

From above we see that theN solitons are located atx̂n .

IV. A POSSIBLE ASTROPHYSICAL APPLICATION:
SATURN’S RING

The radial structure of Saturn’s rings has been speci
by the high resolutions of spacecraft and ground-based
servations. It is found that the rings display the followin
features: several localized main broad rings~fine structure!
with the hyperfine structure~or microstructure! of thousands
of narrow rings. Now we try to apply our model to unde
stand Saturn’s ring structure. First we will discuss the fea
bility of our simple model in this application. Here it is su
ficient to mention the extensive review of Nieto@13#. Nieto
stated that nebular disks in the solar system mainly unde
two evolution stages: a hydrodynamic stage and a p
gravitation stage. According to Nieto, patterns of a regu
distribution, for example, the Titius-Bode law, are inherit
from the hydrodynamic stage of the gas-dust disk. T
means that the general feature of the regular pattern for
in the first stage is not altered seriously in the second sta
We reasonably assume that this is also true for Saturn’s
tem. Then we deal with the proto-Saturn disk in the ea
hydrodynamic stage when the central object has not b
fully developed.

We take an infinitely thin fluid disk with uniform rotation
and self-gravitation as an approximate model for the neb
of primeval Saturn. In a sense we attempt to solve
‘‘easy’’ problem: understanding the basic properties of str
ture formation. The thickness of Saturn’s rings is perha
below 1 km @14#. So when we consider the perturbatio
with wavelengths much larger than the thickness, the ef
of taking into account the finite thickness is not significant
the study of the collective process at larger scales. So
disk can be regarded as an infinitely thin one. In general,
treatment will be incomplete in the sense that it omits
effect of differential rotation. The existence of differenti
rotation implies a potential source of free energy to tap
feed into growing disturbances@15#. For the problem of the
formation of the ring-shaped structure, we concern ourse
with the nonlinear modulation of the finite amplitude pertu
bations. These perturbations are supposed to have bee
cited and preserved. In this case the omission of the dif
ential rotation does not seem essential. The role of
assumption of uniform rotation is to make the problem ma
ematically tractable. In view of the universality of amplitud
equations, it is reasonable to think that the overall effect
including differential rotation or other details is encapsula
in the parametersvg8 and T in Eq. ~14!. So what we really
assumed is the constancy of thevg8 and T. In the case of
differential rotation, these parameters will depend on d
tancer in a complicated way. As long as we do not conce
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the excitation and amplification of the perturbations, it see
plausible to assume thatvg8 and T vary slowly in the main
part of the disk. Therefore, the main feature of the patt
formation scenario is not altered.

The relatively strong density perturbations are from
central bulge, excited by the accretion process of the for
tion of the central object~Saturn!. When these perturbation
propagate outward, their amplitudes gradually decrease
ing to collisions or other damping mechanism, showing
validity of the natural boundary condition. Such perturb
tions are considered to be the seeds of the hyperfine s
ture. When they enter the nonlinear stage, due to the mo
lational instabilities, the initial smooth envelope will finall
evolve toN stable envelope solitons. The solitons have sh
edges, leading to the formation of the structure with mo
lation scales.

Thus the disk ultimately separates into several primit
broad rings. In the later period the outer rings accrete i
satellites, while the inner rings survive due to tidal for
from the central planet and develop into the observed
tern. Therefore, the formation of Saturn’s rings can be s
cessfully described by a linear scale and a modulation s
of the collective process of the density perturbations in
primordial nebular disk.

Now we give some detailed calculations. The model
rameters for Saturn’s unperturbed nebular disk are take
cs;2 cm s21, s0;20 g cm22, and V;1.231026 s21.
ThenQ;1.1, which signifies the marginal global stability o
the model disk.

The hyperfine structure is thought to be formed by
seeds of linear perturbations. The characteristic scalel
;2p/k052cs

2/Gs0;50 km in our chosen parameters. Th
typical width of narrow ringlets is said to be a few tens
kilometers@16#, showing that the linear scale we obtain
agrees with the observation in magnitude.

As we have said, the formation of the fine structure of
rings is supposed to be attributed to the nonlinear proc
,
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described by the amplitude equation~14!. Its solution isN
solitons. The soliton-shaped profiles characterize the e
broad rings. The locations of theN solitons rely on the initial
form of the envelope, which we do not know. To give a
intuitive insight we just assume that the initial envelope c
be modeled byQ sech(r/L), whereL is taken to be about the
magnitude of Saturn’s scale (Rs). Then the locations of the
solitons can be calculated according to formula~21!. If we
takeN59, the locations of the nine solitons have the pro
erty r n11 /r n5 x̂n11 / x̂n;1.15– 1.35. These ratios are not d
pendent on the absolute values of the parametersvg8 andT in
Eq. ~14!. It is found that the above ratios approximate to t
Titius-Bode law of Saturn’s main rings~A, B, andC rings!
and inner six regular satellites:r n11 /r n;1.17– 1.28.

V. CONCLUSION

We have investigated the pattern formation process in
infinitely thin fluid disk with self-gravitation and uniform
rotation. In the circularly symmetric case, the amplitu
equation for the envelope function turns out to be the n
linear Schro¨dinger equation. If the natural boundary cond
tion is satisfied by the finite-amplitude perturbation, the lon
time asymptotic behavior of the solution to the nonline
Schrödinger equation isN stable solitons. Thus the self
modulation of the initial perturbation leads to the formati
of an N-soliton structure in the disk. The application of th
model to Saturn’s ring system is discussed and it is inter
ing to find that the ring structure can be understood in t
soliton pattern picture. However, whether this collective p
cess competes with the resonance or other mechanism
mains to be seen.
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