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N-soliton pattern in a self-gravitating fluid disk
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A nonlinear process of density perturbations in an infinitesimally thin fluid disk with uniform rotation and
self-gravitation is investigated. In a locally Cartesian system the amplitude equation turns out to be the
nonlinear Schrdinger equation. By solving the equation it is shown that the perturbed density can undergo
modulation in space, forming aN-soliton pattern in the radial direction. An astrophysical application of this
model to the early evolution of Saturn’s ring system is studi€d.063-651X97)11012-1

PACS numbd(s): 03.40.Kf, 95.10.Ce, 62.18s

[. INTRODUCTION mous nonlinear Schdinger equation.
The nonlinear Schiinger equation has been solved by

When the density perturbations excited in a self-Zakharov and Shab88] using the inverse scattering method.
gravitating fluid disk have finite amplitudes, a modulation of It is shown that for the initial value problem with the natural
the envelope occurs owing to nonlinear couplings of the perboundary condition, the long-time asymptotic solutioriNis
turbations. Then, in general, a spatial pattern is formed in thetable solitons. This indicates that the nonlinear interactions
disk to saturate to the finite amplitude. Pattern formations irof the finite amplitude perturbations lead to the pattern for-
nonequilibrium fluid systems have been extensively disimation from an initially smooth envelope, forming an
cussed1]. When nonlinearities are not strong, it is said thatN-soliton structure in the disk.
a system can often be described theoretically by simple equa- The application of our model to the highly complicated
tions, which are called amplitude equations. The ways ofystem of Saturn’s rings gives some interesting results. The
deriving amplitude equations from microscopic equations instudy of Saturn’s rings is usually based on the resonance
clude the introduction of multiple scales to formally separatetheory of celestial mechanics. However, for plasma physics
the fast and slow dependend@s3] or the use of mode pro- or gravitating systems with long-distance interactions, the
jection technique$4,5], which emphasizes the slaving idea. role of collective effects is often decisive. The analysis of
Microscopic equations are considered as either more or lesollective effects is a tradition of plasma physics. Introduc-
realistic descriptions of the phenomena or mathematicafion of its ideas and methods to the study of the gravitating
models chosen so that their linear instabilities and long-timesystems seems fruitfulb]. Accordingly, we will try to ex-
solutions mimic those of the system under study. An interplain the origin of Saturn’s ring structure on the basis of the
esting point is that there are different microscopic modelsamplitude equation describing the pattern formation in a
that have the same type of amplitude equations, whose forriuid disk.
is universal and whose numerical parameters reflect the de- The remainder of this paper is organized as follows. In
tails of each physical system. The studies of pattern formaSec. Il the amplitude equation describing the interactions of
tions are encountered in solid-state physics, nonlinear opticslensity perturbations up to nonlinear fourth order in an infi-
chemistry, and biology, showing the well-known analogiesnitely thin fluid disk with uniform rotation and self-
to fluid systems. This collective process of pattern formatiorgravitation is obtained. In Sec. Ill the long-time asymptotic
is also important in some astrophysical backgrouidses-  solution to the nonlinear Schiinger equation is given. The
pecially in the case of a self-gravitating disk. To deal withlocations of theN solitons are calculated under a certain
such a problem some simplifications must be made for it tanitial condition. The application to Saturn’s rings is studied
be analytically tractable. In our model the disk is assumed tan Sec. IV. Conclusions are given in Sec. V.
be infinitely thin and rotating uniformly. This idealized
model has been studied in our previous work and the ampli- Il. AMPLITUDE EQUATION
tude equation has been obtained by two-time-scale analysis
[7]. In this paper we will investigate the amplitude equation An infinitesimally thin fluid disk with uniform rotation
in a circular symmetric case, which turns out to be the fa-2nd self-gravitation is described by equations
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v ) After the linearization of the original fluid equations one can
S F (v Vv ZQXV— - Vp—Vo+0T, (2)  obtain the dispersion relation

2 wi=402+K%cZ-27Gook, (6)
V20 + —7Z =47God(2), )
wherec;, is the sound velocity.
where o is the surface density; is the local velocity Q is By writing
the rotating velocity, ane is the gravitational potential. The
equations are written in the reference frame rotating at the v= f VutVe—QXr, @

angular velocity€).
As our discussion is on the density perturbation of the
disk, we write where\ and u are the Clebsch variables suitable for baro-
tropic fluids[9], Egs.(1)—(3) can be brought into a Hamil-
o=0o+T, (49 tonian description approach, which is widely discussed in
plasma physic§10]. Transforming to the Fourier compo-

where o is the background unperturbed density anthe o5 and introducing the canonical variable where

perturbation. In the assumption of slow variationogf with

respect to the perturbationand using the WKB approxima- K 01/2
tion k> (d/4r)In|7 in which k is the wave number of the = —112 (ag+ay), (8)
perturbation, (2wy)
o7 exp —iot+ik-r). (5)  we get the perturbative expansion equatiorapf7]:
|
day

W + | wkak— - | f dkldkz[kalkzaklakzﬁ(k— kl_ kz) + 2Vk2kk1atlak2(s(k+ kl_ k2) + V:klkzazlatzﬁ(k-i- k1+ kz)]

—i f dk1dkodKal 4Wig, ko, Bk, Ak, Ak, 0K = K1 =Ko = K3) +6(Wii k,k, T Wi k k) Ak, 3,3k,

X 5( k+ kl_ kz_ k3) + 1Mkklk2k3akla:2a:35(k_ kl+ k2+ k3) + 4\/\/:k1k2k3a:13.:28.:35(k+ kl+ k2+ k3)]

e )

The most unstable mode lies atv/dk=vy=0 or k, andT is the interaction coefficient. In a locally Cartesian
= wGaO/cs, where the dispersion curve has a minimum; forsystem, making the transformatiofisl]
a nearly marginally stable disk with=2c,Q/7mGoy=1,
this mode is most easily excited. We suppose that the pertur- Jd 4 _d 19
bation is a narrow wave packet with central wave vegtpr x o T ay T a0 (13
(chosen as the direction of the axis) selected. Thus, in
consideration of the linear dispersi@), only the four-wave and takingv,~0 for the most unstable mode, we get the
process is important. We have written this out in E%).up  equation
to fourth order.

Using the two-time-scale method, from E@®), we can CO0A 1 A ) )
derive the amplitude equatidifor details sed7]) ot T2 00 5z (2m) TIA["A=0, (14)
2
i(%ﬂ) %)+EU J A Lv 9 v2A—(2m)2T|A2A which describes the original perturbations in the circular
gt "9ax| 2 "2 Ko symmetric case.
-0 (10 Becausel <0 andvé>0 [7], Eq.(14) can be transformed
' into a dimensionless form
where
L 5 +lulu=o, (15
20 1/2 . . ey u|“u=
7'=(w—0) koRE A(r,t)elkox—iekt], (11) T2
ko

whereu=2|T|Y%s?A, X=r/(v{so)¥2 s=t/sy, ands, is
£ Pw an appropriate time scale. If we analytically continue Eq.
Ug_< ) . Ug ( ) , (12 (15 to X<0 in a symmetrical way, it becomes the well-
k ko known nonlinear Schidinger equation.
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Ill. N-SOLITON SOLUTION and

Zakharov and Shab#8] have shown that the nonlinear R,
Schralinger equation can be solved exactly by the inverse a(l)= [F(=if+3)]
scattering method for the initial value problem with the natu- T(—i+Q+ LI (—i¢—Q+1)’
ral boundary condition thgu| tends to zero agx|— to-

gether with all itsX derivatives. Satsuma and Yajinia2] i sin(7Q)
provided a detailed analysis. It is found that if the initial b({)= ——.
value of Eq.(15) is real and not an antisymmetric function of cost{m{)

X, which is just our case, a bound soliton state is formed. The , A

long-time asymptotic behavior of the solution is well de- From above we see that theé solitons are located &, .

scribed by a series of solitons, while the nonsoliton part is

shown to decay as™ 2, IV. A POSSIBLE ASTROPHYSICAL APPLICATION:
For brevity we will not display how to solve the nonlinear SATURN'S RING

Schralinger equation, but summarize the related results. The

long-time asymptotic solution is written 48] The radial structure of Saturn’s rings has been specified

by the high resolutions of spacecraft and ground-based ob-

N servations. It is found that the rings display the following
u—>2 Sh(X,8) =217, sechi2n,(X—2&,5—X,) ] features: several localized main broad rir(fige structurg
n=1 with the hyperfine structuréor microstructurg of thousands
X exy — 2i &%+ 2i(£2— n?)s], 16 of narrow rings.. Now we try to apply our model to under—_
H n (60— 70)s] (16) stand Saturn’s ring structure. First we will discuss the feasi-
where bility of our simple model in this application. Here it is suf-

ficient to mention the extensive review of Nidtb3]. Nieto
b({n) stated that nebular disks in the solar system mainly undergo
29,3’ (2] (17 two evolution stages: a hydrodynamic stage and a point
gravitation stage. According to Nieto, patterns of a regular
In the above,l,=¢,tin, (&, and 5, are both reglare distribution, for example, the Titius-Bode law, are inherited

g(n:(zﬂn)_lln(

discrete eigenvalues of the equation from the hydrodynamic stage of the gas-dust disk. This
) means that the general feature of the regular pattern formed
lwg+Uv={ogv, (18 in the first stage is not altered seriously in the second stage.

We reasonably assume that this is also true for Saturn’s sys-
vy 1 0 0w - , ) tem. Then we deal with the proto-Saturn disk in the early
toro=(,), 03=(g -1), andU=(y o), inwhichuisa  pyqrodynamic stage when the central object has not been

where the eigenfunction is a two-component column vec-

solution of Eq.(15) andv develops according to fully developed.
_ We take an infinitely thin fluid disk with uniform rotation
lvy=Auv, and self-gravitation as an approximate model for the nebula

of primeval Saturn. In a sense we attempt to solve the
“easy” problem: understanding the basic properties of struc-
ture formation. The thickness of Saturn’s rings is perhaps
below 1 km[14]. So when we consider the perturbations
’ (19) with wavelengths much larger than the thickness, the effect
of taking into account the finite thickness is not significant in

. . the study of the collective process at larger scales. So the
where p and C are constants independent xf a({) and  gisk can be regarded as an infinitely thin one. In general, the
b(£) are the transmission and reflection coefficients for thereatment will be incomplete in the sense that it omits the
scattered state of E{18). _ effect of differential rotation. The existence of differential

It is still rather difficult to deal with Eqs(18) and(19).  rotation implies a potential source of free energy to tap to
An example that can be solved by the inverse-scatteringeed into growing disturbancd45]. For the problem of the
method is the case(x,s=0)=Q sechg) [12]. In this case, formation of the ring-shaped structure, we concern ourselves
¢,=0 andy,=Q—n+3, wheren must be positive integers with the nonlinear modulation of the finite amplitude pertur-
satisfying Q—n+3>0; the number of solitons iN=[Q  pations. These perturbations are supposed to have been ex-
+3] with the square brackets indicating the integer part. Theited and preserved. In this case the omission of the differ-
N-soliton solution becomes ential rotation does not seem essential. The role of the
assumption of uniform rotation is to make the problem math-
ematically tractable. In view of the universality of amplitude
equations, it is reasonable to think that the overall effect of
including differential rotation or other details is encapsulated

(1 o) 1p%-1 %
=lo 1\z e C&TC

p?lul®  iug
—ip?uy —|u

+(P2+1)_1 |2

N
u— 2, 27psecti2 (k%) lexd ~2in;s],  (20)

where in the parameters and T in Eq. (14). So what we really
b(i assumed is the constancy of tbg andT. In the case of

>A<n=(27ln)_1|n< ("7{1) ) (21) differen_tial rotatio_n, these parameters will depend on dis-

2nna’ (im,) tancer in a complicated way. As long as we do not concern
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the excitation and amplification of the perturbations, it seemslescribed by the amplitude equati¢td). Its solution isN
plausible to assume thaf, and T vary slowly in the main  solitons. The soliton-shaped profiles characterize the early
part of the disk. Therefore, the main feature of the patterrbroad rings. The locations of tli¢ solitons rely on the initial
formation scenario is not altered. form of the envelope, which we do not know. To give an
The relatively strong density perturbations are from theintuitive insight we just assume that the initial envelope can
central bulge, excited by the accretion process of the formabe modeled byQ sech(/L), whereL is taken to be about the
tion of the central objectSaturr). When these perturbations magnitude of Saturn’s scaldrf). Then the locations of the
propagate outward, their amplitudes gradually decrease owvsolitons can be calculated according to form(24). If we
ing to collisions or other damping mechanism, showing theake N=9, the locations of the nine solitons have the prop-
validity of the natural boundary condition. Such perturba-ertyr, ., 1/r,=Xq+1/X,~1.15—1.35. These ratios are not de-
tions are considered to be the seeds of the hyperfine strugendent on the absolute values of the param@té,ade in
ture. When they enter the nonlinear stage, due to the moduEq. (14). It is found that the above ratios approximate to the
lational instabilities, the initial smooth envelope will finally Titius-Bode law of Saturn’s main ring@, B, andC rings)
evolve toN stable envelope solitons. The solitons have shargnd inner six regular satellitesr ., /r,~1.17—1.28.
edges, leading to the formation of the structure with modu-
lation scales. V. CONCLUSION

Thus the disk ultimately separates into several primitive We h . . dth f . .
broad rings. In the later period the outer rings accrete intqQ e have investigated the pattern formation process in an

satellites, while the inner rings survive due to tidal forcelnfinitely thin fluid disk with self-gravitation and uniform

from the central planet and develop into the observed patttion. In the circularly symmetric case, the amplitude
equation for the envelope function turns out to be the non-

tern. Therefore, the formation of Saturn’s rings can be sucl. hedi X f1h | bound di
cessfully described by a linear scale and a modulation scald'€ar Schrdinger equation. If the natural boundary condi-

of the collective process of the density perturbations in dlon is satisfied. by the fir_mite-amplitude perturbation, the _Iong—
primordial nebular disk. time asymptotic behavior of the solution to the nonlinear

Now we give some detailed calculations. The model pa_Schrcdinger equation isN stable solitons. Thus the self-

rameters for Saturn’s unperturbed nebular disk are taken dpodulation of the initial perturbation leads to the formation
c~2cms? 0,~20 g cm?2 and Q~1.2x10 6 s? of anN-soliton structure in the disk. The application of this
S 1 1 " . y . . . oy . .
ThenQ~ 1.1, which signifies the marginal global stability of MOdel to Saturn’s ring system is discussed and it is interest-
ing to find that the ring structure can be understood in this

the model disk. : : ; :
The hyperfine structure is thought to be formed by thesoliton pattern picture. However, whether this collective pro-

seeds of linear perturbations. The characteristic scake is cess competes with the resonance or other mechanism re-

~2mlky=2¢2/Gay~50 km in our chosen parameters. The mains to be seen.

typical width of narrow ringlets is said to be a few tens of

kilometers[16], showing that the linear scale we obtained

agrees with the observation in magnitude. This work was supported in part by the National Climbing
As we have said, the formation of the fine structure of theProgram of China and the National Natural Science Founda-

rings is supposed to be attributed to the nonlinear processon of China.
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